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Abstract

A challenge in the use of semiactive dampers for the earthquake response reduction is the development of implementable

control algorithms. Exact optimal control resulting from the numerical solution to Euler–Lagrange equations requires a

priori knowledge of earthquake in the control interval, which is not possible. This paper proposes a causal sub-optimal

implementable control to reduce the earthquake response using an inherently nonlinear controllable fluid damper. The

proposed method is basically based on the prediction of the near-future ground accelerations using maximum-entropy

method. The earthquake response of low-rise, two degree of freedom (dof) base isolated structure is investigated for the

proposed causal sub-optimal control and the resulting performance is compared to the exact optimal control and the

uncontrolled case. The results show that the proposed control is promising in protecting the earthquake-excited buildings.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The strong desire for better utilization of new materials and lower costs have motivated the development of
new concepts for protecting structures from earthquakes. Passive and active control techniques have already
been widely studied to alleviate the seismic hazards in civil engineering structures [1–11]. Among the passive
systems, base isolation is one of the most effective and widely-used systems because of its simple mechanism
and cost. These systems use a flexible isolation system implemented between the foundation and the
superstructure so as to increase the natural period of the structure. However, some researchers [12–15] have
recently raised concerns as to its efficiency considering the near-fault, high-velocity, long-period seismic pulses,
which may cause large isolation displacements at isolation period. The large displacement requirements of
isolation bearings have resulted in solution, which is not economically feasible. The use of supplemental
dampers in seismic isolation reduces the base isolator displacements, but can have the undesirable effect of
increasing interstory displacements and accelerations in the superstructure for high levels of damping [13]. An
increase in the interstory drifts and superstructure accelerations is counter to the primary goal of isolation
systems: to protect the sensitive internal equipment and non-structural elements. Makris [16] illustrated the
solution to this problem as to use an adaptive damping system like semiactive damping system.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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The recent developments have shown that the semiactive dampers are promising in suppressing the
vibrations [17–22]. Semiactive control systems are a class of control systems in which the control actions are
applied by changing the mechanical properties (i.e., stiffness and damping) of the control device with almost
no external power. A challenge in the use of semiactive dampers is the development of implementable
nonlinear control algorithms. The most general approach for solving optimal control problems for nonlinear
systems requires the solution of a two-point boundary value problem described by Euler–Lagrange equations
via numerical dynamic optimization techniques [14,23,24]. Since these techniques require a priori knowledge
of earthquake excitation, the resulting optimal control is non-implementable and is useful to check the
optimality of implementable causal control strategies. Some recent studies on the development of causal
nonlinear strategies for structures incorporating semiactive devices have been given in Refs. [25–29].

In this study, seismic response of a two degree of freedom (dof) low-rise base isolated structure with a
controllable fluid damper installed at isolation level has been investigated for uncontrolled, proposed sub-
optimal and exact optimal control cases. Sub-optimal control has been obtained using the 10-step ahead near-
future predictions of ground accelerations while the exact optimal control has been derived from the numerical
solution to the Euler–Lagrange equations using the a priori knowledge of excitation in the whole control
interval. The numerical solution to the Euler–Lagrange equations has been obtained using a gradient
approach in which the state and the costate equations have been solved based on the successive iterations
made on the control trajectory. The performance of the proposed sub-optimal control has been compared to
the uncontrolled case and the exact optimal control case.

2. Structural system

The base isolation system used in this study is assumed to be linear and represented by a linear spring in
parallel with a linear viscous dash-pot. The masses ms and mi represent the superstructure of the building and
the mass of the base floor above the isolation system, respectively. The superstructure and the isolation stiffness
and damping coefficients are represented by ks, cs, ki and ci, respectively. Structural relative displacements and
the ground displacement are denoted by r1, r2 and z, respectively. For the example structure; the masses, the
stiffness and the damping coefficients are selected as mi ¼ ms ¼ 105 kg, ki ¼ 1.65� 106Nm�1,
ks ¼ 3� 107Nm�1, ci ¼ 1.1� 105N sm�1 and cs ¼ 3� 104N sm�1 [14]. The controllable damper implemented
in the isolation level (Fig. 1) is modeled by the following algebraic expression with five parameters:

f ¼ f 0uHðuÞ tanhðr1=d0 þ _r1=v0Þ þ kdr1 þ cd _r1 (1)

where the constant parameters d0 and v0 are used to describe the pre-yield behavior of the device, f0 is a
controllable yield force, and kd and cd describe the post-yield behavior and the behavior when u ¼ 0. The
control force f is changed optimally via the control decision variable u; H(u) is the Heaviside step function of u.

As briefly stated in introduction, there are mainly two types of semiactive control systems: (a) active variable
stiffness and (b) active variable damping. In active variable stiffness application, the structural stiffness is
modified to achieve a non-resonant condition between the response and the excitation. In the active variable
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Fig. 1. Idealized model for a two DOF (degree-of-freedom) base isolated structure.
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Fig. 2. Hysteretic behavior of the controllable damper for u ¼ 0 and 1.
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damping application, supplemental energy dissipation devices such as friction and fluid dampers are modified
to allow adjustments in their damping capacities. Eq. (1) can represent the electro-rheological (ER) dampers,
magneto-rheological (MR) dampers and also fluid dampers. Device parameters used are f0 ¼ 105N,
d0 ¼ 0.05m, v0 ¼ 0.04m s�1, cd ¼ 2� 105N sm�1 and kd ¼ 3� 105Nm�1. These constant parameters in
Eq. (1) are selected to represent the behavior of controllable dampers [30,31]. The inherent device stiffness is
very small compared to structural stiffness. The dominant contribution of the device to structural response is
through the damping. This contribution can also be seen from Fig. 2, which shows the hysteretic behavior of
the investigated semiactive damper modeled by Eq. (1) for u ¼ 0 and u ¼ 1. The proposed control defined in
Section 4 modifies the energy dissipation capacity of the structure via the controllable fluid damper (semiactive
damping device) based on a sub-optimal control policy.

3. Exact optimal control

The exact optimal control is derived from the numerical solution to the Euler–Lagrange equations. Since the
detailed derivation of Euler–Lagrange equations can be found in Ref. [23], only the results will be given here.
A general nonlinear system of dynamical equations, subjected to control actions u(t) and with initial
conditions x0 is

_xðtÞ ¼ fðxðtÞ; uðtÞ; tÞ; xðt0Þ ¼ x0; x 2 Rn; u 2 Rm (2)

The optimal control strategy u(t) minimizes the integral cost function J,

J ¼

Z tf

0

LðxðtÞ; uðtÞ; tÞdt (3)

where L(x,u,t) is the scalar Lagrangian of the cost function. The Hamiltonian H is defined as

HðxðtÞ; uðtÞ;kðtÞ; tÞ ¼ LðxðtÞ; uðtÞ; tÞ þ kTfðxðtÞ; uðtÞ; tÞ (4)

where k(t) is the costate vector. The Euler–Lagrange equations provide the necessary conditions for optimality [23]:

_kðtÞ ¼ �
qH

qx

� �T

¼ �
qfðx; u; tÞ

qx

� �T
kðtÞ �

qLðx; u; tÞ

qx

� �T
; kðtf Þ ¼ 0 (5)

qH

qu
¼ kT
ðtÞ

qfðx; u; tÞ
qu

þ
qLðx; u; tÞ

qu
¼ 0 (6)

Eqs. (2) and (5) define a two-point boundary value problem. Simultaneous solution of these coupled state and costate
equations throughout the control interval can be difficult for non-autonomous systems. In this paper, a gradient
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approach in which iterations are made on the control function u(t) is used based on the update equation

ukþ1ðtÞ ¼ ukðtÞ þ Kk

qHðx; u; tÞ

qu
(7)

where Kk is a scalar gradient gain.
For the purpose of obtaining the optimal solutions, the nonlinear system of dynamical equation of a two

dof base isolated structure with the selected semiactive damper can be expressed as

_xðtÞ ¼ fðxðtÞ; uðtÞ; tÞ ¼ Axþ gðx; uÞuþG€zðtÞ; xðt0Þ ¼ 0 (8)

where

x ¼
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(9)

gðx; uÞ ¼

0

0

�ðf 0=miÞHðuÞ tanhðr1=d0 þ _r1=v0Þ

0

8>>>><
>>>>:

9>>>>=
>>>>;
; G ¼

0

0

�1

�1

8>>><
>>>:

9>>>=
>>>;

(10)

The cost function J to be minimized is selected as

J ¼

Z tf

t0

LðxðtÞ; uðtÞ; tÞdt ¼

Z tf

t0

½€r2ðtÞ þ €zðtÞ�
2 dt ¼

Z tf

t0

ks½r2ðtÞ � r1ðtÞ� þ cs½_r2ðtÞ � _r1ðtÞ�

ms

� �2

dt (11)

where the Lagrangian LðxðtÞ; uðtÞ; tÞ is the square of the superstructure absolute acceleration. To initialize the
previously defined iterative solution procedure, the control trajectory u(t) is selected as uk ¼ 0(t) ¼ 1 in the
control interval and the final time tf for the cost function is equal to the earthquake duration.
4. Sub-optimal control based on prediction of near-future excitation

As stated in the previous section, exact optimal value of the control variable u(t) at time t resulting from the
numerical solution to Euler–Lagrange equations requires a priori knowledge of ground excitations in the
control interval. Even though a priori knowledge of ground excitations in the whole control interval is not
possible in practice, the current excitation at time t can be measured and feed back to the system
instantaneously for control purposes [7]. Moreover, near-future ground accelerations can be predicted using
various prediction algorithms [2,32–34]. Provided that the current ð€zðt ¼ tÞÞ and the near-future ground
accelerations ð€ziðt ¼ tþ iDtÞ; i ¼ 1; 2; 3; . . . ;NÞ are available by measurement and prediction at the current
time t, the numerical solution to Euler–Lagrange equations can be obtained as given in the previous section
for the sub-interval ½t; tþNDt� in which the accelerations are predicted, instead of whole control interval.

Since the Euler–Lagrange equations are solved in the sub-interval including the predicted ground
accelerations, the resulting control will be sub-optimal, which refers to the approximately optimal solution and
denoted by usoðtÞ; tptptþNDt. To initialize iterative solution procedure, the sub-optimal control trajectory
uso(t) is selected as usoðtÞ ¼ 1; tptptþNDt while the final time (tf)so for the cost function is equal to
ðtf Þso ¼ tþNDt where Dt ¼ 0:005 s is the sampling time for the El Centro-NS earthquake and N, the number
of ground acceleration to be predicted, which is selected as 10 in this study.
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Namely, the sub-optimal control trajectory uso(t) minimizes the integral cost function

Jso ¼

Z tþNDt

t

LðxðtÞ; usoðtÞ; tÞdt (12)

Once the sub-optimal control trajectory uso(t) is obtained for the sub-interval ½t; tþNDt�, uso(t ¼ t) is the
value of the control variable, which must be applied to the controllable damper. Then, the next N near-future
ground accelerations are predicted for the next optimization interval and the corresponding Euler–Lagrange
equations are solved and the control process continues in this way.

Proposed technique has been also applied to linear structures by the author and his coauthors [2–4]. In those
studies, the problem is relatively simpler since the investigated structures are linear so that the state and costate
equations are decoupled. However, the state and costate equations are generally coupled in the nonlinear
systems as in this case.

Since the detailed derivation of the prediction algorithm maximum-entropy method (MEM) for the near-
future ground accelerations ð€ziðt ¼ tþ iDtÞ; i ¼ 1; 2; 3; . . . ;NÞ can be found in literature, only the results will
be given here for the completeness of the paper [32,33]. Earthquake motion can be modeled as a q-dimensional
autoregressive (AR) process, which is specified by

gt ¼ St�1aþ nt (13)

where the time varying matrix St�1 and the parameter vector a are given by

St�1 ¼ ½�gt�1;�gt�2; . . . ;�gt�q� (14)

a ¼ ½a1; a2; . . . ; aq� (15)

State–space form of the AR model parameters can be described as

at ¼ Iat�1 (16)

A fast and simple recursion procedure for MEM spectral estimation was proposed by Andersen [33]. This
procedure is just a formalization based on the method given by Burg [32]. Useful recursion formulas for the
estimation of AR model parameters amn are given as

amn ¼ am�1;k � am;mam�1;m�k; k ¼ 1; . . . ;m� 1 (17)

am;m ¼ 2
XN�m

t¼1

bm;tb
�
m;t

,XN�m

t¼1

ðbm;tÞ
2
ðb�m;tÞ

2 (18)

bm;t ¼ bm�1;t � am�1;m�1b
�
m�1;t (19)

b�m;t ¼ b�m�1;tþ1 � am�1;m�1bm�1;tþ1 (20)

where am,k expresses the kth parameter on m-dimensional AR model and N, the number of data to be used for
the identification. The initial conditions for Eqs. (17)–(20) are given as

b1;t ¼ xt; b
�
1;t ¼ xtþ1; t ¼ 1; . . . ;N � 1 (21)

where xt denotes equally spaced ground acceleration data at time t. The real value of the ground acceleration
at time t can be measured on line while the other N�1 data can be assumed to start the prediction process.
They may even be assumed to be almost equal to xt which is the only data available. However, we will have all
the real-measured values of ground acceleration after N steps later and continue to prediction using the
measured real data.

MEM is used for the parameter estimation of AR process, which describes the ground motion. It is
supposed that the parameters at time t are obtained by using the available information from (t�NDt) to t. For
this purpose, Eqs. (17)–(20) are repeated under the initial conditions given by Eq. (21) until m is equal to the
order of the AR model. Selection of the amount of information (N) for the identification and the model order
is usually ambiguous. However, the order of AR model for earthquake ground motions is generally selected
between two and five [34]. So in this study two-dimensional AR model is selected.
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Once the parameters are estimated, the predictions at time t+1 and t+i are evaluated by using the
following equations:

ĝtþ1 ¼ Stâtþ1jt (22)

ĝtþ1þi ¼ Stþiâtþ1jt (23)

where S(t+i) is given by

Stþi ¼ ½�ĝtþi;�ĝtþi�1; . . . ;�gt;�gt�1; . . . ;�gtþi�qþ1� (24)

It must be noted here that the primary focus of this study is not on the analysis of the prediction algorithm. It
is also beyond the scope of this paper how the performance of the control algorithm has been affected by the
number of prediction steps. Some of these issues have been studied in Refs. [2–4] for linear structures. The
prediction of near-future seismic data is not the contribution of this study since it has already been studied in
literature using different techniques. The main contribution of this study is the proposed new, sub-optimal
implementable control rule, which uses the prediction of near-future ground accelerations in conjunction with
the solution of Euler–Lagrange equations.

5. Numerical results

Seismic response of two dof low-rise base isolated structure with a controllable fluid damper under the May
18, 1940 Imperial Valley earthquake El Centro (NS component) (Fig. 3) is evaluated in order to examine the
performance of the proposed control in comparison to uncontrolled case and the exact optimal case.

The calculations are performed for the first 10 s-duration of the excitation, which includes the peak
acceleration values. The damper force is zero for the uncontrolled case. The damper forces for the proposed
sub-optimal and exact optimal control are given in Fig. 4. As shown in Fig. 4, the damper force governed by
the sub-optimal control usoðtÞ; tptptþNDt follows the damper force governed by the exact optimal control
uðtÞ; 0ptptf except for the peak values. Proposed sub-optimal damper force is generally smaller in magnitude
than the exact optimal damper force. Since the proposed sub-optimal and exact optimal control algorithms
use the same semiactive damper, the resulting damper force levels are directly related to the selected control
algorithm. The peak damper forces required by exact optimal control are dependent on the structural
properties and the characteristics of the ground motion. The exact optimal control trajectory may require very
large control forces for large near-field earthquakes which may be difficult to achieve in practice [17].

Time histories for the response (interstory displacement and the superstructure absolute acceleration) and
the cost functions are illustrated in Fig. 5 for all the investigated cases. The maximum values are also given in
Table 1. As indicated in Fig. 5 and Table 1, the uncontrolled cost function is the maximum and the exact
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Fig. 3. May 18, 1940 Imperial Valley earthquake El Centro (NS component).
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Table 1

Maximum response quantities for uncontrolled and controlled cases.

Maximum values Uncontrolled Sub-optimal control Exact optimal control

r2�r1 (cm) 0.54 0.42 0.30

€r2ðtÞ þ €zðtÞ (cm/s2) 163.10 125.50 97.50

J 41 671 18 439 16 579

U. Aldemir / Journal of Sound and Vibration 322 (2009) 665–673 671
optimal cost function is the minimum while the proposed sub-optimal cost function is just between them for
tf ¼ 10 s. It is clear from Fig. 5 that the sub-optimal cost function is much smaller than the uncontrolled cost
function. It is shown that the proposed sub-optimal control policy is very significant in suppressing the
uncontrolled interstory displacement and the superstructure absolute acceleration. Fig. 5 also shows that sub-
optimal response and cost trajectories follow closely the exact optimal response and cost trajectories except for
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peak values even though proposed sub-optimal control uses only the 10-step ahead ground acceleration
predictions. It is expected that as we predict the more distant future ground accelerations more accurately, the
performance of the proposed sub-optimal control will approach to the performance of the exact optimal
control. These analyses show that the proposed sub-optimal control is promising for the control of earthquake
response of structures.

6. Conclusion

Exact optimal control resulting from the numerical solution to Euler–Lagrange equations is an idealized
case and can not be implemented since it requires a priori knowledge of earthquake in the control interval. In
this study, a new sub-optimal implementable control rule, which uses the prediction of near-future ground
accelerations, has been proposed. To evaluate the performance of the proposed control, the real-time control
of a two degree of freedom (dof) low-rise base isolated structure with a controllable fluid damper under
earthquake excitation has been investigated and the corresponding results have been compared to
uncontrolled and exact optimal control cases. Numerical results show that the proposed sub-optimal control
is very effective in reducing the uncontrolled earthquake response and is promising for implementation since it
results in solutions close enough to exact optimal solutions in terms of the reduction in the cost function and
super structure response.
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